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is obtained for the latter.
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1. Introduction

There are good theoretical reasons for which particle physics proposes that new exotic par-

ticles must exist. In particular, the strong CP problem and the hierarchy problem motivate

symmetries and particles beyond the standard model of particle physics. On one hand, su-

persymmetry (SUSY) is an ingredient that appears in many theories for physics beyond

the standard model. SUSY solves the hierarchy problem and predicts that every particle

we know should be escorted by its superpartner. In order for the supersymmetric solution

of the hierarchy problem to work, it is necessary that the SUSY becomes manifest at rela-

tively low energies, less than a few TeV , and therefore the required superpartners must have

masses below this scale (for supersymmetry and supergravity see e.g. [1]). On the other

hand, the strong CP problem can be solved naturally by implementing the Peccei-Quinn

(PQ) mechanism [2]. An additional global U(1) symmetry referred to as PQ symmetry

broken spontaneously at the PQ scale can explain the smallness of the CP-violating Θ-

vacuum term in quantum chromodynamics (QCD). The pseudo Nambu-Goldstone boson

associated with this spontaneous symmetry breaking is the axion [3], which has not yet

been detected. Axinos, the superpartners of axions, are special because they have unique

properties: They are very weekly interacting and their mass can span a wide range, from

very small (∼ eV )to large (∼ GeV ) values. What is worth stressing is that, in contrast to

the neutralino and the gravitino, axino mass does not have to be of the order of the SUSY

breaking scale in the visible sector, MSUSY ∼ 100GeV − 1TeV .

One of the theoretical problems in modern cosmology is to understand the nature of

cold dark matter in the universe. There are good reasons, both observational and theo-

retical, to suspect that a fraction of 0.22 of the energy density in the universe is in some

unknown “dark” form. Many lines of reasoning suggest that the dark matter consists of

some new, as yet undiscovered, massive particle which experiences neither electromagnetic

nor color interactions. In SUSY models which are realized with R-parity conservation the
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lightest supersymmetric particle (LSP) is stable. A popular cold dark matter candidate is

the LSP, provided that it is electrically and color neutral. Certainly the most theoretically

developed LSP is the lightest neutralino [4]. However, there are other dark matter can-

didates as well, for example the gravitino [5, 6] and the axino [7, 8], the superpartner of

axion [3] which solves the QCD problem via the Peccei-Quinn mechanism [2]. In this arti-

cle we work in the framework of Randall-Sundrum type II brane model (RSII), we assume

that the axino is the LSP and address the question whether the axino can play the role

of dark matter in the universe, and for which range for axino mass and five-dimensional

Planck mass.

Our work is organized as follows: The article consists of four section, of which this

introduction is the first. In the second section we present the theoretical framework, while

in section 3 we show the results of our analysis. Finally we conclude in the last section.

2. The theoretical framework

2.1 The brane model

Over the last years the brane-world models have been attracting a lot of attention as a novel

higher-dimensional theory. Brane models are inspired from M/string theory and although

they are not yet derivable from the fundamental theory, at least they contain the basic

ingredients, like extra dimensions, higher-dimensional objects (branes), higher-curvature

corrections to gravity (Gauss-Bonnet) etc. Since string theory claims to give us a funda-

mental description of nature it is important to study what kind of cosmology it predicts.

Furthermore, despite the fact that supersymmetric dark matter has been analyzed in stan-

dard four-dimensional cosmology, it is challenging to discuss it in alternative gravitational

theories as well. Neutralino dark matter in brane cosmology has been studied in [9], while

axino dark matter in brane-world cosmology has been studied in [10].

In brane-world models it is assumed that the standard model particles are confined

on a 3-brane while gravity resides in the whole higher dimensional spacetime. The model

first proposed by Randall and Sundrum (RSII) [11], is a simple and interesting one, and

its cosmological evolutions have been intensively investigated. An incomplete list can be

seen e.g. in [12]. In the present work we would like to study axino dark matter in the

framework of RSII model. According to that model, our 4-dimensional universe is realized

on the 3-brane with a positive tension located at the UV boundary of 5-dimensional AdS

spacetime. In the bulk there is just a cosmological constant Λ5, whereas on the brane there

is matter with energy-momentum tensor τµν . Also, the five dimensional Planck mass is

denoted by M5 and the brane tension is denoted by T .

If Einstein’s equations hold in the five dimensional bulk, then it has been shown in [13]

that the effective four-dimensional Einstein’s equations induced on the brane can be written

as

Gµν + Λ4gµν =
8π

m2
pl

τµν +

(

1

M3
5

)2

πµν − Eµν (2.1)

where gµν is the induced metric on the brane, πµν = 1
12 τ τµν + 1

8 gµν ταβ ταβ − 1
4 τµα τα

ν −
1
24 τ2 gµν , Λ4 is the effective four-dimensional cosmological constant, mpl is the usual four-
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dimensional Planck mass and Eµν ≡ Cα
βρσ nα nρ gβ

µ gσ
ν is a projection of the five-dimensional

Weyl tensor Cαβρσ, where nα is the unit vector normal to the brane. The tensors πµν and

Eµν describe the influence of the bulk in brane dynamics. The five-dimensional quantities

are related to the corresponding four-dimensional ones through the relations

mpl = 4

√

3π

T
M3

5 (2.2)

and

Λ4 =
1

2M3
5

(

Λ5 +
T 2

6M3
5

)

(2.3)

In a cosmological model in which the induced metric on the brane gµν has the form of a

spatially flat Friedmann-Robertson-Walker model, with scale factor a(t), the Friedmann-

like equation on the brane has the generalized form [12]

H2 =
Λ4

3
+

8π

3m2
pl

ρ +
1

36M6
5

ρ2 +
C

a4
(2.4)

where C is an integration constant arising from Eµν . The cosmological constant term and

the term linear in ρ are familiar from the four-dimensional conventional cosmology. The

extra terms, i.e the “dark radiation” term and the term quadratic in ρ, are there because

of the presence of the extra dimension. Adopting the Randall-Sundrum fine-tuning

Λ5 = −
T 2

6M3
5

(2.5)

the four-dimensional cosmological constant vanishes. In addition, the dark radiation term

is severely constrained by the success of the Big Bang Nucleosynthesis (BBN), since the

term behaves like an additional radiation at the BBN era [14]. So, for simplicity, we neglect

the term in the following analysis. The five-dimensional Planck mass is also constrained

by the BBN, which is roughly estimated as M5 ≥ 10TeV [15]. The generalized Friedmann

equation takes the final form

H2 =
8πG

3
ρ

(

1 +
ρ

ρ0

)

(2.6)

where

ρ0 = 96πGM6
5 (2.7)

with G the Newton’s constant. One can see that the evolution of the early universe can be

divided into two eras. In the low-energy regime ρ ≪ ρ0 the first term dominates and we

recover the usual Friedmann equation of the conventional four-dimensional cosmology. In

the high-energy regime ρ0 ≪ ρ the second term dominates and we get an unconventional

expansion law for the universe. In between there is a transition temperature Tt for which

ρ(Tt) = ρ0. Once M5 is given, the transition temperature Tt is determined as

Tt = 1.6 × 107

(

100

geff

)1/4 (

M5

1011 GeV

)3/2

GeV (2.8)

where geff counts the total number of relativistic degrees of freedom.
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2.2 The particle physics model

The extension of standard model (SM) of particle physics based on SUSY is the minimal

supersymmetric standard model (MSSM) [16]. It is a supersymmetric gauge theory based

on the SM gauge group with the usual representations (singlets, doublets, triplets) and

on N = 1 SUSY. Excluding gravity, the massless representations of the SUSY algebra are

a chiral and a vector supermultiplet. The gauge bosons and the gauginos are members

of the vector supermultiplet, while the matter fields (quarks, leptons, Higgs) and their

superpartners are members of the chiral supermultiplet. The Higgs sector in the MSSM

is enhanced compared to the SM case. There are now two Higgs doublets, Hu,Hd, for

anomaly cancelation requirement and for giving masses to both up and down quarks. After

electroweak symmetry breaking we are left with five physical Higgs bosons, two charged H±

and three neutral A,H, h (h being the lightest). Since we have not seen any superpartners

yet SUSY has to be broken. In MSSM, SUSY is softly broken by adding to the Lagrangian

terms of the form

• Mass terms for the gauginos g̃i, M1,M2,M3

Mg̃g̃ (2.9)

• Mass terms for sfermions f̃

m2
f̃
f̃ †f̃ (2.10)

• Masses and bilinear terms for the Higgs bosons Hu,Hd

m2
Hu

H†
uHu + m2

Hd
H†

dHd + Bµ(HuHd + h.c.) (2.11)

• Trilinear couplings between sfermions and Higgs bosons

AY f̃1Hf̃2 (2.12)

In the unconstrained MSSM there is a huge number of unknown parameters [17] and thus

little predictive power. However, the Constrained MSSM (CMSSM) or mSUGRA [18] is

a framework with a small controllable number of parameters, and thus with much more

predictive power. In the CMSSM there are four parameters, m0,m1/2, A0, tanβ, which are

explained below, plus the sign of the µ parameter from the Higgs sector. The magnitude of

µ is determined by the requirement for a proper electroweak symmetry breaking, its sign

however remains undetermined. We now give the explanation for the other four parameters

of the CMSSM

• Universal gaugino masses

M1(MGUT) = M2(MGUT) = M3(MGUT) = m1/2 (2.13)

• Universal scalar masses

mf̃i
(MGUT) = m0 (2.14)
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Model m0 (GeV ) m1/2 (GeV ) tanβ mχ (GeV ) Ωχh2

A 200 500 15 205.42 0.64

B 400 800 25 337.95 1.82

C 1000 600 30 252.41 7.37

D 350 450 20 184.46 1.2

Table 1: Four benchmark models considered in the analysis for the neutralino NLSP case.

Model m0 (GeV ) m1/2 (GeV ) tanβ mτ̃ (GeV ) Ωτ̃h
2

E 50 500 10 187.78 0.0088

F 60 600 11 223.47 0.012

G 70 700 12 258.95 0.017

H 100 800 15 295.93 0.022

Table 2: Four benchmark models considered in the analysis for the stau NLSP case.

• Universal trilinear couplings

Au
ij(MGUT) = Ad

ij(MGUT) = Al
ij(MGUT) = A0δij (2.15)

•

tanβ ≡
v1

v2
(2.16)

where v1, v2 are the vevs of the Higgs doublets and MGUT ∼ 1016 GeV is the Grand

Unification scale.

3. Analysis and results

We consider eight benchmark models (shown in table 1 and table 2) for natural values

of m0,m1/2, representative values of tanβ and fixed A0 = 0, µ > 0. In these models

the lightest neutralino (denoted by χ) or the lightest stau (denoted by τ̃ ) is the lightest

of the usual superpartners and thus the NLSP. Furthermore the following experimental

constraints (for the lightest Higgs mass and a rare decay) [19, 20] are satisfied

mh > 114.4GeV (3.1)

BR(b → sγ) = (3.39+0.30
−0.27) × 10−4 (3.2)

At this point we remark that any viable model should also satisfy two more mass

limits [20]

mτ̃1 > 81.9GeV (3.3)

mχ̃±
1

> 94GeV (3.4)

However, in the models we consider here the NLSP mass is at least mNLSP ≃ 184GeV and

therefore further imposing limits of O(100GeV ) on other sparticles is meaningless.
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The SUSY spectrum (as well as the Higgs bosons masses) and the neutralino relic

density have been computed using the web site [21], and the top quark mass is fixed to

mt = 172.7GeV [22]. Furthermore, following [23] for the stau relic density we have made

use of the simple formula

Ωτ̃h
2 =

( mτ̃

2TeV

)2
(3.5)

Before proceeding any further a couple of remarks are in order. First, we mention that

in principle the saxion (a scalar field in the same supermultiplet with axion and axino) could

have important cosmological consequences. Here, however, we shall assume that the saxion

mass is such that its cosmological consequences are negligible. This kind of assumption

was also made in [8]. Furthermore, in two previous works [8, 10] the axino dark matter in

standard and brane cosmology was considered, in which the axino thermal production only

was taken into account. There it was found that the reheating temperature (in standard

cosmology) or the transition temperature (in brane cosmology) had to be bounded from

above, TR,t ≤ 106 GeV . However, at this temperature the strong coupling constant is

of the order one, gs ∼ 1, a fact which may render the whole discussion invalid1. That

is why in the present work we have chosen to only consider the non-thermal production

from the NLSP decay. If we restrict ourselves to small M5 or Tt we can neglect the

thermal production mechanism as being negligible compared to the non-thermal production

mechanism. Finally, in principle one should also impose the BBN constraints (see e.g. [24])

if the NLSP decays after BBN time. However in the axino dark matter case the BBN

constraints are easily avoided because the NSLP has a relatively short lifetime and decays

well before BBN [7]a.

For the axino abundance we take into account the non-thermal production (NTP) and

we impose the WMAP constraint for cold dark matter [25]

0.075 < Ωcdmh2 = Ωα̃h2 < 0.126 (3.6)

In the NTP case the contribution to the axino abundance comes from the decay of the

NLSP

Ωα̃h2 =
mα̃

mNLSP
ΩNLSPh2 (3.7)

with mα̃ the axino mass, mNLSP the mass of the NLSP and ΩNLSPh2 the NLSP abundance

had it did not decay into the axino.

Now we need to take into account the effect of the novel law for expansion of the

universe. The relic density of a particle of mass m is modified as follows [26]

Ω(b)

Ω(s)
= 0.54

xt

x
(s)
d

(3.8)

in the limit xt ≫ xd and in the S-wave approximation, where the index b stands for

”brane”, the index s stands for ”standard”, xt = m/Tt and xd = m/Td, with Tt the

transition temperature and Td the decoupling temperature of the particle of mass m. In

1We would like to thank F. D. Steffen for pointing this out.
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Figure 1: Axino abundance versus axino mass for several values of the five-dimensional Planck

mass (Neutralino NLSP, benchmark model A ). The strip around 0.1 is the allowed range for cold

dark matter. Values of M5 used are 104 GeV , 105 GeV , and 106 GeV from top to bottom.
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Figure 2: Same as figure 1, but for the stau NLSP case, benchmark model E.

standard cosmology x
(s)
d ≃ 30. In a given particle physics model the axino abundance in

terms of M5 and mα̃ is given by

Ωα̃h2 = 0.9 × 107.5
( mα̃

GeV

)

Ω
(s)
NLSPh2

(

M5

GeV

)−3/2

(3.9)

For each benchmark model we have obtained plots (for example we show the plots

for models A and E, for the rest of the models there are similar plots) which show the
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Figure 3: M5 versus mα̃ for the stau NLSP case. For the observational value Ω
(b)
α̃

h2 = 0.1 one

can see the upper bound on M5 imposing that mα̃ ≤ 10 GeV .

axino abundance Ωα̃h2 as a function of the axino mass mα̃ for several values of the five-

dimensional Planck mass M5. Figure 1 corresponds to the neutralino NLSP case (the values

that we have used are 104 GeV , 105 GeV , and 106 GeV from top to bottom), while figure

2 corresponds to the stau NLSP case (same values of M5). We see that there is always one

allowed range for the axino mass from the milli-GeV range to a few GeV . If however M5

is high enough, in the stau NLSP case the axino has to be very heavy. In this case, using

the formula above for the axino abundance and imposing the condition that mα̃ ≤ 10GeV ,

it is easy to show that for Ω
(s)
NLSPh2 = 0.01 the fundamental Planck mass is bounded from

above, M5 ≤ 7.4 × 104 GeV . This can be shown in figure 3.

4. Conclusions

We have studied axino dark matter in the brane-world cosmology. The theoretical frame-

work for our work is the CMSSM for particle physics and RS II for gravity, which predicts

a generalized Friedmann-like equation for the evolution of the universe. We assume that

axino is the LSP and the lightest neutralino or the lightest stau is the NLSP. For the ax-

ino abundance we have taken into account the non-thermal production and have imposed

the cold dark matter constraint 0.075 < Ωcdmh2 < 0.126. The formula valid in standard

four-dimensional cosmology is corrected taking into account the novel expansion law for

the universe. We have considered eight benchmark models (four for the neutralino NLSP

and four for the stau NLSP case) for natural values of m0 and m1/2 and representative

values of tanβ. In these models the neutralino or the stau is the lightest of the usual

superpartners (and thus the NLSP, since we assume that the axino is the LSP) and ex-

perimental constraints are satisfied. For each benchmark model we have produced plots

of the axino abundance as a function of the axino mass for several different values of the

– 8 –
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five-dimensional Planck mass. The obtained plots show that in general the axino can be

the cold dark matter in the universe for axino masses from 0.001GeV up to a few GeV .

Furthermore, in the stau NLSP case an upper bound on the five-dimensional Planck mass

is obtained, M5 ≤ 7.4 × 104 GeV .
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